前进工业 4.0

智能自动化四要素

摘要

工业4.0对制造业的革命,好比亚马逊对零售业的影响。 这项思维试图驱策制造业者和设备制造商,将机器自动 化和设备控制器里的信息集成在一起。藉由系统集成,设 备制造商可以发现新的信息化产品,找出打造智能工厂 的方法,工厂也能依照需求,自动采取修正措施或寻找最 佳解决途径。 为了从这场工业4.0的浪潮中获益,设备制造商必须具备四大要素,才能集成从传感器到云端服务器等不同层次的制造环境,但是对于这些制造商来说,或许更大的挑战是从传统硬件控制器架构转移到智能机器自动化的软件架构,让该软件架构能在任何工业电脑(IPC)上运作。唯有软件自动化,才能达到工业4.0所需要的集成能力与弹性。

工业4.0的重要性

亚马逊翻转零售业和谷歌主宰广告的手法,是将深度集成的数字策略套用到传统业界。工业4.0应用了相同的概念,将类似的数字策略植入制造业的环境,期望能够打破传统思维。采纳工业4.0的技术并将其应用到工厂的设备制造商和制造业者已经蓄势待发,准备主导各自的垂直市场;没有接受工业4.0概念的业者,将在这场战役中淡出。

由德国政府发起,工业4.0运动的焦点在于把价值链数字 化以建立智能制造设备。这对世界各地的制造业产生了 深远的影响。事实上,多数人都知道制造业早已兴起了第 四次革命,上图简录了工业4.0承先启后的变革。

工业4.0在许多方面,为设备制造商创造了新产品的契机

将产品转变成软性服务

提供客制化、弹性与价值

创造新的收入来源

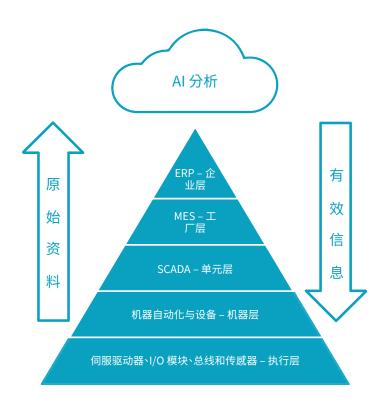
简化营运流程

提升整体效率

云端运算、智能设备控制器和智能边缘装置,是打造智能工厂的基石。时至今日,根据富比士杂志调查,只有三分之一的制造业者表示他们的价值链有高度数字化,超过80%的人希望在五年内将他们的价值链进行数字化。

再者,资诚企管顾问(PwC)预测,2017到2023年间,制造业者和工程界每年会对物联网(IoT)和工业物联网技术(IIoT)投资约310亿美元。值得注意的是,从2016年到2020年,全球物联网和工业物联网技术市场预期会从1570亿成长到4570亿美元。

然而,工业4.0的预测中,智慧设备控制器经常扮演被忽略的角色。众人倾向把焦点放在可执行预测分析和人工智能(AI)的云端运算技术,以找出那些可用于设备控制器的有效信息;不过工业4.0架构涵盖的层面远比云端联机要广。高德纳咨询(Gartner Group)预测,虽然2018年物联网/工业4.0的部署中,企业产生的数据只有10%是由设备控制器的边缘装置处理,但是到2025以前,百分比会成长到75%。


工业4.0架构中智慧设备控制器的角色

工业4.0的主要目标是收集和共享每项制造组件和机器产生的自动化信息,以达成优化制造系统或工厂的整体表现。要取得真正的成功,必须分析这些数据,来找出有效的信。而这些信息会在正确的动作或精准的运作模式下出现,进而持续应用在智能工厂中,变得更有竞争力。这不是件轻松的任务,因为数据必须汇总、分析再重新分配到各传感器和服务器,进行不同层次的处理。

要达到此目标,工业4.0试图在企业制造和供应链的配置下,集成与数字化下列六个执行和信息处理层级:

- 1. 云端(人工智能产生的有效信息与产品契机)
- 2. 企业层(ERP服务器)
- 3. 工厂层(制造执行系统, MES)
- 4. 单元层(数据采集与监控系统, SCADA)
- 5. 机器层(机器自动化、设备控制器)
- 6.终端层(传感器、马达、驱动器、I/O模块)

下图说明工业 4.0 体系中,上下层如何互相沟通。

工业4.0的成功部署,仰赖无缝的安全联机与上述企业信息的集成。欲贯彻其精神,首先得要从机器层级的传感器收集、整合并汇总数据,接着透过SCADA将信息往上传给MES,再传给ERP,最终传给能应用人工智能的云端,但这还不是全部。

当工业4.0的联机能力和人工智能,着重于发现有效信息的同时,有个非常重要的地方经常被忽略:

若是没有活用这些信息,那么找到信息也没用!

如果工厂和机器不够「聪明」到快速融入并活用这些信息,工业4.0的潜力将永远无法发挥。

再者,如同前先前高德纳咨询所说,十分重要却常被忽略的工业4.0元素是「智能」设备控制器。设备控制器与云端功能一样重要,或者可以说更重要,因为它是真正突破架构的来源:集结信息后将其安全导入和导出云端,简单来说,就是实际运用了那些有效的信息。

高德纳咨询也相信,终点分析会随着时间变得极度复杂 且具预测性,以改善系统的响应。如果设备控制器没有「 聪明」到能够根据有效信息或控制器自行产生的信息,来 适应不断变迁的制造环境,工业4.0的愿景将无法实现。

工业4.0的四项需求,来自智能自动化支持

智能设备控制器必须有多方功能和特色,以确保机器可以在智慧工厂金字塔里扮演好自己的关键角色。这些功能可分为四大类:

世界级机器自动化

工业 4.0 的设备控制器基础,必须在制造业允许的条件下,展现最强的机器自动化效能与最精确的实时性。它也必须在采用最常见的开放式标准以保护项目投资的情况下达到这些要求,同时必须具备足够的弹性,以适应未来需求的变迁。

由于工业4.0聚焦于网络需求与数字化,因此它需要一个能通用于数字总线的标准。虽然现在有很多专用的数字总线解决方案,以及一些高效能、「开放」的标准,EtherCAT目前仍然鹤立鸡群,是最为广泛使用的数字总线标准,原因很简单,因为它是实现工业4.0最安全且最好的选择。

从效能和实时性来看,最能成为 EtherCAT 的总线敌手是 PROFINET 和 Sercos,两者都有很扎实的产值,但所费不赀;另一个缺点是只有部分伺服驱动器制造商采用这两者其中一种,绝大多数的伺服驱动器制造商都向 EtherCAT 靠拢。选择愈多、价格愈低,也愈能让标准与时俱进。标准的效力和市场上支持此标准的厂商数成正比——EtherCAT 不费吹灰之力就在市场上赢得了这场比赛。

其他标准也极为重要,如 PLC 作业的 PLCopen与 IEC 61131标准。理想情况下,机器自动化平台能支持第三方组件和可扩张的上下游体系。例如,「实时视觉」可在控制器上直接运作,减少机器设定时间并增加机器产能,这需要坚固耐用、经得起时间考验的实时操作系统(RTOS)来巩固机器自动化软件。从第三方将解决方案移植到一个平台的数量,可以证明该平台的可信度。第三方通常不太愿意将自己的解决方案移植到机器自动化平台上,除非他们觉得这个平台够可靠,并能产生够多收入。

与系统集成的设备控制器

工业4.0也重新塑造机器控制的架构。先前,每个设备制造商都会提供他们自己的设备控制器,机器作业时就像孤岛般各行其是。工业4.0不只要求机器和设备控制器都连到云端,也要连到其他机器和负责监控机器和环境的传感器。这些连结开启了远程监控、远程管理,甚至是远程部署的大门。结合这些元素,新的制造思维开始推动智能工厂的建立,这些智慧工厂比先前更聪明,能够处理大量客制化产品和更多需求。(大量客制化是有效做出一批产品,或在相同产线制作不同产品的能力)。

为了说明工业4.0所需的多台设备控制器集成价值,这里 有两个范例。

许多公司早已开始使用协作机器人(co-bots)组装和卸除CNC机器上的零件。协作机器人大幅降低了整合成本,所以即使是小型制造厂也能使用这样的机器人,如这篇文章提到的Lowercase与Axis New Jersey合作案例;但随着工作愈来愈复杂,PLC或软件状态机需要扮演交通警察,来指挥多个机器人、零件供应机、视觉系统、防撞及其他作业的流程。协作机器人的脚本可能很复杂并常常需要隐藏。对CNC上游来说,通常有CAD或CAM系统提供CNC数据,所有的组装和卸除机制则需根据零件的形状和大小调整。

即使有能减少集成费用的协作机器人,机械单元里还是有许多设备控制器和可动式零件需要集成,以达到工业4.0的愿景。设备制造商和工厂业者必须确保他们所选的机器和设备控制器开发平台可以轻易与系统中所有的控制器集成。要集成所有控制器的平台必须强大、开放又标准化,能够将所有控制器无缝接轨地统整到系统中。理想情况下,所有控制器会在单一电脑上运作以简化整合,不过设备制造商至少必须采用标准,如VDMA,来集成机器人的控制,以及PLCopen,来进行更快的统整,并使各部件的协作更为密切。

为何平台应该要开放又强大呢?用来集成控制器的开发工具必须提供工作相对应的功能。如果工作需要阶梯图,PLC语言可能就比较适合;如果控制器组件需要物件导向,C++也许就是最适合的。为了让人机接口(HMI)优化使用经验,那么也许.NET或第三方的GUI开发软件,如LabView,会更为适用。反过来说,如果机器开发者觉得用PLC逻辑比较得心应手,那么强迫机器开发者去用C++做阶梯图的工作就不太适合。重点是打造工业4.0 机器控制的优化整合环境必须支持多种开发语言,才能做出更符合需求的机器。

我们也必须顾虑未来,智慧工厂会想办法达成大量客制化的愿景(批次)。比方说,从前自动化公司必须建造一座工厂来制造双门汽车,再建造另一座工厂制造四门汽车。今日的吉普汽车工厂,八种吉普车型——双门和四门车型——都能在同一条产线组装。应用工业4.0的概念,产线可借着云端和一群机器人下载作业指令进行双门焊接,再接收指令进行四门焊接,这需要大量的集成与协调,但可以用音乐会的方式达到——指挥家和所有演奏者看着同一本乐谱演奏,所有机器人也会依车型对应的流程整齐有素地跳出装配之舞。

这样做无法立刻让工厂无人化,不过仍有其可能性,因为 所有的机器互相联机,使我们能远程监控、远程管理, 更重要的是能远程部署。设计机件工作流程的工程师很 快就能够在云端中开发并进行远程部署。

信息共享与智能撷取

部署工业4.0最重要的地方,就是机器和控制器能够轻易透过网络互连,这需要新增对标准通讯协议的支持,如OPC UA、MQTT、TSN、Modbus等。

在工业4.0模型中,智能边缘机器控制常会进行前置处理,以集结并累加数据,再送至云端。机器控制可以依据收集到的有效信息动态变换工作量流程或流程中的规范,但要达到动态很难,系统必须非常弹性,能接受各种输入。要做到这样的弹性,唯有一个开放、聪明的软件架构可以达成。

硬件控制器和PLC的外型固定,无法针对收集的数据进行第三方分析;数据必须传给电脑。只有以软件为主的控制平台可以优化信息分享与智能撷取程序。在电脑上执行机器自动化的软件必须够弹性,才能确保RTOS指派给特定的CPU核心,其他第三方软件也能指派给单一电脑上的其他核心,并可直接存取共享内存。如此一来,控制系统与第三方软件都能直接沟通,并用相同数据运作。这种机制被称为相依屏蔽(affinity masking),它比虚拟化技术要强上数倍。虚拟化无法直接存取共享内存,只能仰赖缓冲处理和邮件处理(mailboxing),两者都加了不必要的延迟。当然,延迟也会减少效能和质量。

此外,电脑环境里的通讯协议通常是随着软件附赠的,而硬件控制器常需要其他I/O卡来容纳不同的通讯协议联机,这些额外的I/O卡还会产生不必要的花费。

最后,联机的系统增加了网络攻击的机会,因此保护数据和机器控制成为首要之务。系统必须有世界级的安全机制来对抗这些威胁。现在在Windows上执行的PC机器自动化软件会比较安全,因为微软投入大量资金,以确保操作系统与Azure基础结构的高度安全性。

智慧边缘物联网能力

边缘运算是一种云端运算系统优化的方法。它在网络边缘(靠近数据源处)进行数据处理,以达到优化的效果。智慧边缘物联网设备控制器是新兴的案例,示范如何客制化不同装置,让它们在用户的环境中工作。收集控制器、传感器、I/O模块与驱动器数据,在本机执行预测分析,加上第三方 AI 处理,能使整个系统反应更为灵活。

此外,通常设备控制器都能受惠于同一平台上执行的第三方商业软件套件(如商业智能、AI、远程管理或部署发行控制)。没有设备控制器厂商可以提供所有功能,所以扩增工具永远有其价值。例如,微软提供Azure IoT Edge,可将 AI 放到边缘装置上。

再者,建造设备控制器、设备和整套系统是费时、复杂、风险高又昂贵的工作。今日,日益增进的运算能力和联机能力,能够快速建立与维持实际设备控制、设备或工厂的数字型态或「数字双胞胎」,进而虚拟化此「建造」工作。当系统变得愈来愈复杂,数字双胞胎技术也相对变得愈来愈有价值。在机器或设备系统真正建造出来,或切削第一个工件之前,工程师能够利用软件视觉仿真来查看哪一种机器或工件设计是最佳的。例如,可以事先辨别瓶颈或碰撞,因此在建造第一个系统前,重新设计系统来解决缺失。

当然,所有组件都必须透过紧密的集成后互相配合,所以选择正确的软件或技术来集成或建造工业4.0的智慧设备控制器,是迈向成功的要诀。

总结:智慧机器自动化的工业 4.0 需求

回顾工业4.0所需的四大要素时,可以看出集成控制器系统需要很高的弹性,而能够做到这种弹性的方法就是软件。

换句话说,只有在所有机器控制的系统都能集成在一起时,才能发挥工业4.0的全部潜能,所以选择正确的软件工具或技术,让所有机器控制系统合作无间地工作,就是成功的关键。总结上述四大要素,关键在于:

- 世界级机器自动化技术
- 最开放的部署方式和环境,能够联合云端处理数据
- 可以在边缘与 AI 合作产生有效信息的机器自动 化技术
- 动态适应与活用信息的能力
- 能受惠于和控制器并存的第三方应用程序

当机器自动化开发解决方案中的许多微小功能可决定工业4.0新思维的终极成功之时,机器制造商、工厂业者及设备控制器设计师不应该忽略一个事实:他们不是在为机器或工厂选择一个小玩意儿,而是在投入一段合作关系,此合作伙伴要能提供可用十年或更久的智能机器自动化软件。

迈向成功之路的要角:工业4.0智能机器自动化软件

有一种常见的思路,让单一设备控制器能用这四大要素织成一匹五彩斑斓的锦缎:控制器必须用软件建造,部署在工业电脑(IPC)上,但不是所有软件都可以做到。设备制造商需要采用标准的智能机器自动化软件,而这个软件必须能在工业电脑上执行,且能与控制系统及支持工业4.0的第三方软件同时运作。

相对来说,专用硬件控制器(如大厂PLC、PAC或运动控制卡)因为有固定格式和简单的使用方式所以表现很好。然而,它们在实行工业4.0的时候完全没有弹性。在机器互连架构成为必要的同时,硬件解决方案很快会被隔绝成一座座自动化孤岛。这些产品无法执行第三方分析软件或通讯应用程序。事实上,用硬件解决方案,客户通常需要花更多的金钱来安装I/O卡或通讯卡,只为了能让机器连上网络。

更糟的是,硬件控制器就只是硬件。未来是机器数字化的时代,机器要能在生产过程中适应各种情况、采取正确行动,或根据新的可用信息采取相应措施,只有软件控制器可以有如此大的弹性。

记住,工业4.0就是机器自我数字化,它会撷取机器所有的相关信息,再将这些数字化数据分享出来,用于分析、改善和修正,并用在新产品上。软件是唯一能做到这一点的方法,但也不是所有的机器自动化软件都可以做到。

多数软件控制器都会限制在同一台电脑上能同时运作的其他控制器数量或第三方应用程序的数量。另外,多数软件控制器只把重心放在一种程序语言上,如PLC语言、C++或.NET,而非囊括三者,如此客户将无法针对手边需求,使用自己需要的语言。最后,许多软件解决方案不是真的开放,因为你只能向销售控制软件的厂商购买工业电脑。相反地,许多软件机器自动化厂商不会让你在对手的电脑上执行他们的软件。

最重要的是,以电脑为基础、采用工业4.0标准、能在一般用途操作系统(如微软 Windows)上执行,亦能在同一台工业电脑上以实时系统(RTOS)强化的机器自动化软件,才是实现工业4.0的优化平台。

一个真正开放的机器自动化软件解决方案,应该要能在任何工业电脑上执行,工业电脑的配备必须配合工业自动化需求打造,且必须将系统管理造成的中断降到最低。此类机器自动化软件可以:

今天的市场已经有这样的解决方案,KINGSTAR就是其中一个,它是采用业界标准、为工业4.0打造的工业机器自动化软件。

- 处理所有机器自动化需要的核心运动控制和实时性
- 处理与工业 4.0 相关的特定集成与通讯工作
- 仰赖微软提供的诸多重要功能,如安全性与人工智能
- 响应从云端传回的有效信息
- 能够扩充并支持其他软件机器控制技术不支持的第 三方套件
- 作为智能边缘装置使用,能够因应开放型电脑软件 的最小限制,增加原本未提供的功能

成功的关键:拥抱数字化

虽然很多国家正迎向工业4.0、提供工业策略与建立奖励制度,但多数制造商采用工业4.0,是因为他们看见工业4.0会永远改变制造业的生态,就向亚马逊改造零售业一样。

成功的关键是透过整体制造价值链,全盘接受数字化。云端很重要,但工业4.0的基石是将专用设备控制器转变成智慧机器控制平台,该平台可建造符合工业4.0愿景的智慧工厂。要达到此目标,设备制造商必须重新思考他们的机器控制架构、改变过去不同品牌、不易集成的硬件系统、接受以工业电脑为主要运作平台的工业4.0标准机器自动化软件。智能、开放的软件是唯一能打造优化平台的基础。这项基础不仅能满足优化平台所需的所有功能,更是实现工业4.0光明未来的承诺。

