• IIANews微官网
    扫描二维码 进入微官网
    IIANews微信
    扫描二维码 关注微信
    移动客户端
  • English
2025机器人产业趋势论坛报名
现场仪表

高压变频器在脱硫循环水泵工艺中的应用

  2007年03月07日  

一、引言

中石油西南油气田分公司川西北气矿净化厂座落在四川省江油市,以四川江油中坝气田雷口坡气藏天然气为原料,对天然气进行净化加工,日处理量达50万立方米,是四川省重点企业。主要产品有:硫磺、石油液化气、天然气等,生产的化工产品远销国内外。西北气矿净化厂属于典型的石油化工行业,设备品种多、价值高、对设备完好率及连续运转可利用率要求较高。

川西北气矿净化厂脱硫分厂有1#、2#两台循环水,正常运行时“一用一备”,两台电机均为直接工频启动,启动电流大,既影响设备寿命又对电网产生较大冲击。脱硫工艺中,昼夜循环水温度变化较大,对循环水量要作出相应的调节。但原设备工频定速运行时,只能靠调节阀门的开度来调节循环水量的大小,通过人为改变管网的阻力,增加管网损耗来调节水量,造成相当大的一部分能量浪费在阀门上,致使电费居高不下。使用阀门调节流量,不仅不能够经济运行,而且增加了工人的工作量,调节不及时还会造成管网压力过高或过低,流量过大或过小,影响生产工艺及设备的安全运行。为了降低脱硫生产经济成本,提高工艺精度及工作效率,迫切需要对1#、2#循环水泵进行调速节能将耗改造。

经多次调研、考察,综合比较目前市场上的调速设备,最终决定采用北京利德华福电气技术有限公司生产的HARSVERT-A直接高-高型变频器对两台循环水泵进行节能改造。

二、工况特点

(一)工艺流程

川西北天然气净化厂脱硫循环水系统主要由以下五个部分组成:冷却塔、中间池、循环水泵、溢流泵、脱硫装置。自脱硫装置排出的循环热水,经冷却塔冷却后流入中间池储存;其中大部分水经循环水泵供脱硫装置再度利用,多余部分则由溢流管道溢出。简单工艺流程如下:

高压变频器在脱硫循环水泵工艺中的应用 - 1

图1脱流工艺流程

(二)工艺要求

1、进出冷却塔的温差恒定

要求温差范围恒定(4℃<△t<8℃);如循环水泵阀门开大,水量增大,则冷却水温差减小,水量减小则温差增大。

2、最低压力钳位控制

要求变频器在保证脱硫装置入口水压(大于0.45Mpa)前提下,尽可能的节约循环水用水量,找到满足脱硫工艺生产要求的压力最低临界点。

(三)场地状况:

变频器室长7200mm,宽3000mm。(场地长度有限,无法并列摆放两台HARSVERT-A型变频器。)

(四)现场仪器仪表状况

压力变送器一块:单路输出4~20mA电流,负载能力300Ω(两线制).

温差变送器一块:单路输出4~20mA电流,负载能力300Ω(四线制).

(五)电机及水泵参数

高压变频器在脱硫循环水泵工艺中的应用 - 2

三、现场调试及问题解决方案:

(一)场地问题

考虑到现场安装条件有限,现场决定将变频装置与手动旁路柜分开摆放:将1#、2#变频装置(单台外型尺寸(mm)(W×H×D):3300×2574×1200)并排摆放在变频器室内,而旁路柜则置于循环水泵现场。这样摆放的结果既解决了场地问题,又方便操作人员在循环水泵现场就能观察到变频器送电情况,两全其美。

(二)压力临界点

参考脱硫装置工艺要求,得出“压力”是保证脱硫生产的充分条件,即压力达到0.46Mpa,才能保证脱硫装置正常运行。泵出口压力过低则无法克服水的势能,无法将循环水送至冷却塔;压力过高则泵出水量增大,经冷却循环水的效率不高。因此决定采用“恒压”闭环控制方法,调整变频装置给定频率,找到工艺所需的压力最低临界点,使其即满足工艺所需压力又能保证循环水需求量,使进出冷却塔的温差△t稳定在4℃~8℃之间。经反复试验论证,当给定频率为43Hz时,水泵的压力(0.51MPa)满足工艺要求,温差4.92℃,因此定43Hz为压力临界点。

调试参数表格如下:

高压变频器在脱硫循环水泵工艺中的应用 - 3

(三)变送器负载能力

由于现场只有一块单路输出的压力变送器,且带载能力只有300Ω,而变频器内置S7-200型PLC的模拟量输入模块EM235的输入电阻为250Ω;如将两台变频器的模拟输入回路串联,两个EM235的输入电阻即为500Ω,单台压力变送器无法带动两个EM235模块,此方案不可行。因此现场将压力变送器接入单台变频装置的EM235模块,利用S7-200的模拟量输出模块EM232实时输出一路现场压力,用此输出信号作为另一台变频器EM235的模拟输入。原理框图如图2:

高压变频器在脱硫循环水泵工艺中的应用 - 4

图2

此方法在不增加投入成本(硬件)的情况下,通过改写PLC程序,使1#变频器PLC的EM232模块实时输入一路压力反馈信号,解决了压力变送器负载能力不够的问题,实现了单台压力变送器拖动两台变频器的“闭环”控制。

四、节能计算

(一)水泵变频调速的节能原理

根据流体力学原理:

高压变频器在脱硫循环水泵工艺中的应用 - 5

图3

图3为挡板调节流量和变频调节水量的能量比较图,H2-B-C-H3组成的区域为变频较挡板调节水量节省的功率。

当采用变频调速时,可以按需要升降电机转速,改变水量的性能曲线,使水泵的额定参数满足工艺要求,根据水泵的相似定律,变速前后水量、水压、功率与转速之间关系为:

Q1/Q2=n1/n2

H1/H2=(n1/n2)2

P1/P2=(n1/n2)3

P=H×Q

Q1、H1、P1—风机在n1转速时的水量、水压、功率;

Q2、H2、P2—风机在n2转速时相似工况条件下的水量、水压、功率。

假如转速降低一半,即:n2/n1=1/2,则P2/P1=1/8,可见降低转速能大大降低轴功率达到节能的目的。

水泵功率为315KW,年运行时间8000小时,水泵流量Q和压力H在采用阀门调节流量时近似满足如下关系:H=A-(A-1)Q2,其中A为水泵出口封闭时的出口压力,约为140%。

(二)HARSVERT-A高压变频调速节能分析及计算

高压变频器在脱硫循环水泵工艺中的应用 - 6

采用阀门调节流量时,功耗等于流量Q和压力H的乘积。各种流量的功耗计算如下:

P70%=315×0.75×(1.4-0.4×0.75×0.75)=277.6KW

采用变频调速时所消耗功率

P变频=1.732×4880×23.76×0.96=192.8kW

节电率为(277.6-192.8)/277.6=30.5%

按循环水泵年运行时间为8000小时,电费0.70元/度,单台循环水泵年节电费为(277.6-192.8)×8000×0.70=47.5万元。

五、节水方面

由于脱硫工艺的特殊要求,冷却塔出入口温差的大小决定了循环水量的多少:变频改造前,冬天出入冷却塔温差较大,需水量较小,多余的循环水从溢流泵排出,造成了水量的浪费;变频改造后通过调节给定频率,即减小了循环水量又能保证脱硫工艺对水温的要求,水泵工作在高效区,溢流损失得到很好的控制。

六、结束语

实践证明:HARSVERT-A06/040型高压变频器在川西北循环水泵上的应用是成功的。使用变频器后,节能效果明显;出入口阀门全开,减少了阀门能耗损失;实现了电机的软启动,延长了电机的使用寿命;内置PLC通过采集现场的水压数据(4~20mA信号),根据其设定值和实际值的变化情况,自动调节变频器输出频率,控制水泵转速,实现恒压供水,大大提高了脱硫工艺的自动化水平,具有良好的使用价值。


最新视频
曙光数创:相变间接液冷技术打造数据中心液冷新范式   
台达亮相SNEC 2025:以数智化助力光伏行业提效·融智·减碳   
研祥金码
40年‘针’功夫提速新能源产线
专题报道
《我们的回答》ABB电气客户故事
《我们的回答》ABB电气客户故事 ABB以电气问题解决专家之志,回答未来之问。讲述与中国用户携手开拓创新、引领行业发展、推动绿色转型的合作故事,共同谱写安全、智慧和可持续的电气化未来。
企业通讯
加入全球AI浪潮第一现场
加入全球AI浪潮第一现场

加入全球AI浪潮第一现场,WAIC 2025早鸟票预售。

见微知著·破解失效困局:显微镜全尺度成像驱动失效分析与质量提升
见微知著·破解失效困局:显微镜全尺度成像驱动失效分析与质量提升

2025年6月25日,蔡司《见微知著·破解失效困局:显微镜全尺度成像驱动失效分析与质量提升》在线会即将开播,蔡司将对旗下

在线会议
热门标签

社区